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Deep-learning-based uncertainty quantification for post-stack UHR seismic inversion 

 

Quantitative interpretation of UHR data 

 

For the characterization of the shallow subsurface for offshore wind farms, geotechnical data e.g. cone 

penetration testing (CPT) and ultra-high-resolution (UHR) seismic data are typically acquired. In this 

context, seismic methods are, however, typically relegated to structural characterization and shallow-

hazard localization, which ignores their potential to infer quantitative properties of the subsurface. 

Seismic data are efficient to acquire and can ideally complement CPT measurements, which are highly 

local in nature (and relatively costly). 

 

Quantitative inversion of seismic data requires dedicated processing workflows that have become 

commonplace for exploration applications but are not routinely applied for windfarm site 

characterization. For instance, these include source de-ghosting and de-signature and receiver-side de-

ghosting. These can be challenging to apply for UHR data when accurate measurements are not 

available and because the magnitude of perturbations due to sea-surface waves cannot be ignored 

(Provenzano et al., 2020; Ramani et al., 2022; Henderson et al., 2023; Telling et al., 2024). 

 

In this work, we aim to advance the quantitative interpretation of UHR data, by leveraging the de-

ghosting workflow described in Telling et al., 2024, as a starting point. Here, we focus on investigating 

the uncertainty related to the acoustic impedance inversion from migrated stacks. This is particularly 

important in scenarios with limited data, such as windfarm site characterization, which rely on 

conservative estimates for, e.g., hazard detection. We explore the role of Bayesian uncertainty 

quantification with the machine-learning-based techniques discussed in Rizzuti and Vasconcelos, 2024. 

The goal is to demonstrate the feasibility and effectiveness of such techniques enabled by recent 

advances in deep learning. 

 

Bayesian uncertainty quantification with multiscale invertible networks 

 

In a post-stack acoustic seismic inversion, the data likelihood of 𝒚 (seismic post-stack data) given 𝒙 

(logarithm of the acoustic impedance) is often assumed to be a normal distribution where the mean is 

given by a time derivative 𝑫𝑡 followed by wavelet convolution 𝑾 (fixed, for our purposes) applied to 

𝒙 (Izzatullah et al., 2023). Its log-probability is 

 
− log 𝑝(𝒚|𝒙) =

1

2𝜎2
‖𝑨𝒙 − 𝒚‖2 + ⋯ , 𝑨 = 𝑾𝑫𝑡 . 

Note that additional terms not dependent on 𝒙 are indicated by “⋯”. We assume that the prior 

distribution is differentiable and available in analytical form, for example: 
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‖𝑩𝒙‖2 + ⋯. 

Here, 𝒙0 is a background model. The weighting matrix 𝑩, for instance, might promote models that are 

structurally aligned with some reference image. According to the Bayes' rule, the posterior distribution 

of 𝒙 knowing 𝒚 is 

 𝑝(𝒙|𝒚) ∝ 𝑝(𝒚|𝒙)𝑝(𝒙). 
The aim of this paper is a comprehensive characterization of the posterior distribution for some given 

data 𝒚. The desired solution consists of generating random samples 𝒙~𝑝(𝒙|𝒚), from which any 

statistical moment can then be approximated. 

 

In Rizzuti and Vasconcelos, 2024, a variational inference framework is presented where the posterior 

distribution is implicitly represented by a generative model 𝑝(𝒙|𝒚) ≈ 𝑝𝜽(𝒙|𝒚). The generative model 

is based on a special class of neural networks uniquely suited for uncertainty quantification and widely 

applied to seismic problems: normalizing flows (Kobyzev et al., 2021). In practice, samples from the 

target posterior distribution are generated with a transport map 𝑇𝜽 by evaluating normally distributed 

random inputs 𝒛~𝑝(𝒛), e.g. 𝒙~𝑝𝜽(𝒙|𝒚)  ⇔ 𝒙 = 𝑇𝜽(𝒛). The training is carried out by minimizing the 

Kullback-Leibler divergence: 
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 min
𝜽

KL(𝑝𝜽(𝒙)‖ 𝑝(𝒙|𝒚)) = 𝐸𝒛~𝑝(𝒛) − log 𝑝(𝑇𝜽(𝒛)|𝒚) + log 𝑝𝜽(𝑇𝜽(𝒛)) + ⋯ . 

The advantage of variational inference approaches compared to more traditional Monte Carlo Markov 

chain methods lies in much more favorable computational scaling with respect to problem size (Zhang 

and Curtis, 2021). 

 

An important feature of our approach is the ability to estimate the posterior distribution sequentially 

from coarse low-dimensional grids to fine grids, through so-called multiscale wavelet normalizing 

flows (Yu et al., 2020), as an effective way to manage the ill-conditioning of the inverse problem in 

object. 

 

Example 

 

We analyze field data acquired in the German North Sea for offshore windfarm development and focus 

on a small portion of a 2D line situated around the projected location of a CPT well-log situated 

approximately 160 m away from the seismic line. More technical details about data acquisition and 

processing, especially for source and receiver de-ghosting, are described in Telling et al., 2024. 

 

The background acoustic impedance model is directly obtained from the migration interval velocity and 

Gardner’s relation (see Figure 1). We inferred a zero-phase wavelet by fitting the background acoustic 

impedance to the post-stack trace corresponding to the well-log (projected) location (Figure 2). 

 

Seismic post-stack data 

 

Acoustic impedance (background) 

 
 

Figure 1 Seismic post-stack data and background acoustic impedance. The background model was 

obtained from migration velocities together with Gardner’s relation. 

 

                                            Estimated wavelet 

 

  Frequency bandwidth 

 
 

Figure 2 Wavelet estimated by matching the background model to data. 

 

We depict a summary of the uncertainty quantification results in Figure 2. We show the point-wise 

conditional mean and standard deviation computed from the samples obtained by the trained generative 

model based on multiscale normalizing flows. Note that higher-order statistics can be produced just as 

easily. 
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In Figure 3, we highlight the multiscale behavior of the estimated posterior distribution. We show how 

the conditional mean and standard deviation results evolve by progressively adding finer resolution 

scales, from coarse to fine grids. 

 

Conditional mean 

 

Conditional standard deviation 

 
 

Figure 2 Uncertainty quantification results obtained with the proposed method: acoustic impedance 

point-wise conditional mean and its standard deviation. 

 

 

Coarse grid       ⟶ Fine grid  

    

    
 

Figure 3 Multiscale progression of the proposed uncertainty quantification framework, from coarse to 

fine grids 

 

The road ahead for probabilistic UHR quantitative inversion 

 

The deep-learning workflow here proposed for the characterization of the uncertainty quantification for 

UHR post-stack data is a flexible and computationally feasible tool that has the potential to guide the 

decision-making process in offshore windfarm development in the future. While the example shown in 

this work only considers a 2D seismic line, the method can scale to 3D post-stack inversion problems 
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(Rizzuti and Vasconcelos, 2024). Although currently, UHR data is almost exclusively acquired in 2D, 

the proposed technology is already poised for future 3D acquisition developments. 

 

One fundamental challenge for quantitative inversion for UHR data is the integration of CPT or seismic-

CPT well-log information, especially for wavelet calibration and background acoustic impedance 

estimation. For example, well-log data contained in seismic-CPT measurements are sampled at a lower 

spatial rate than seismic data and the geo-mechanical properties such as density, are inferred only 

indirectly. Moreover, we expect the seismic data characteristics and local measurements to change 

abruptly even within tens of meters from the reference 2D line.  

 

Going forward, we aim to enhance the quantitative characterization of UHR data by including seismic-

CPT well-logs and wavelet effects in the uncertainty analysis. The method can be easily generalized to 

elastic impedance inversion, as well. Finally, another important aspect is the practical use of the inferred 

posterior probability with the integration of decision theory in the proposed Bayesian framework 

(Arnold and Curtis, 2018). 
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